### Deep Learning Libraries from PIL import Image import io import os import tensorflow as tf from sklearn import cross_validation, metrics from train_dataset import read_dataset, classes, read_prediction_images, test_demo import numpy as np import sys import base64, datetime import xml #Setting Batch Size for Model Training batch_size=25 x_train=[] #Experiment Analysis #----------------------------------------------------------- **************************------------------------------------- def plot_images(expected,predicted): print("confusion Matrix:\n ",metrics.confusion_matrix(expected,predicted)) def save_XMLRESULT(pred_cls): for p in pred_cls: pass #*************************************************************************************************************************** #Deep Convolutional Neural Network Model (VGG-16) def cnn_model_fn(features,labels,mode): input_layer=tf.reshape(features["x"],[batch_size,...